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ABSTRACT: How protein structure encodes functionality is
not fully understood. For example, long-range intraprotein
communication can occur without measurable conformational
change and is often not captured by existing structural correlation
functions. It is shown here that important functional information
is encoded in the timing of protein motions, rather than motion
itself. I introduce the conditional activity function to quantify
such timing correlations among the degrees of freedom within
proteins. For three proteins, the conditional activities between
side-chain dihedral angles were computed using the output of
microseconds-long atomistic simulations. The new approach demonstrates that a sparse fraction of side-chain pairs are
dynamically correlated over long distances (spanning protein lengths up to 7 nm), in sharp contrast to structural correlations,
which are short-ranged (<1 nm). Regions of high self- and inter-side-chain dynamical correlations are found, corresponding to
experimentally determined functional modules and allosteric connections, respectively.

■ INTRODUCTION

Proteins perform most of the functional and infrastructural
roles of life at the subcellular level. A protein molecule is a
nanometer-scale polymer of amino acids, which typically folds
into a unique native conformation encoding a specific
functional role.1 The functionality in one region of a protein
(or protein complex) can sometimes be switched on/off or
modulated by perturbing (e.g., via ligand binding) a distant part
of the protein; this property is known as allostery.2,3

Intriguingly, there is growing evidence for allostery occurring
without discernible change in the dominant protein con-
formation(s) following the perturbation. This more subtle
means of communication, termed dynamical allostery,4 shows
that proteins can communicate by merely altering the spread
and time scales of fluctuations around and between the
dominant conformations.5 Recently, the focus has shifted from
identifying specific structural transitions to characterizing shifts
in the conformational ensemble,6,7 with explicit-atom simu-
lations playing a key role in providing the necessary spatial and
temporal resolution to describe the subtle conformational
fluctuations involved.8,9 Because the dynamics of a protein’s
conformational probability distribution determines its function,
information about a protein’s functionality should in principle
be encoded by its structure. Yet, the link between structure and
function remains an area of active research, especially in regards
to elucidating intraprotein communication pathways.
Binding of the allosteric ligand can distort the probability

distribution of a protein in conformational space or time

without changing the most probable conformation; this can
occur via changing the width of the probability distributions of
conformations (i.e., the entropy) as well as interconversion
frequencies (i.e., waiting times between conformational
changes).10 In contrast to existing approaches, which deal
with the former by characterizing correlated structural changes,
this work shows that a crucial missing piece of the connection
between structure and function lies in the latter: namely,
correlated changes in the waiting times.
To illustrate the role of timing, consider the native

conformation of a protein, a tightly packed amorphous (i.e.,
nonperiodic) material in which motion of one part of the
protein often requires concerted motions of other parts of the
protein. If such a system is sufficiently densely packed, an
immobilization transition can occur in which some parts of the
system become jammed despite isolated regions of dynamical
mobility.11 There are usually no structural signatures that can
identify what parts of the system are jammed. In such systems,
what matters for characterizing the system is not the direction
that a particle can move but whether and when a particle can
move. Indeed, the correlation of a particle’s current level of
dynamical activity with its dynamical history (i.e., non-
Poissonian dynamics) is a signature of immobilization behavior.
Such a signature has long been associated with glass-forming
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liquids,12 and, remarkably, was recently found to describe side
chain dynamics within proteins.13 These results suggest the
possibility that, by selectively colocalizing the jammed regions,
proteins can contain intramolecular pathways that are
synchronized in their fluctuations. This motivates the
formulation of a new type of function that measures
correlations in timing. In this paper, I define such a function,
which I call the conditional activity, and use it to map regions of
dynamical memory and predict long-range dynamical correla-
tions in proteins. It is shown that such information is not
revealed by thermodynamic correlation functions like the
mutual information.
The Conditional Activity Function. The standard

approach to elucidate the collective behavior of complex and
structurally heterogeneous systems such as proteins is to
calculate correlations between different parts of the system. The
most widely used correlation function is the mutual
information,14 which for observables X and Y is the entropy
of X plus the entropy of Y minus the entropy of the total system
comprised of X and Y: I(X;Y) = Σx∈XP(x) ln[P(x)] + Σy∈YP(y)
ln[P(y)] − Σx∈XΣy∈YP(x,y) ln[P(x, y)], where P is the
probability function. Intuitively, this is the amount of entropy
(or information) that X shares with Y; I(X;Y) is therefore also
the reduction in entropy of X if the state of Y is known.
Throughout, I use the natural logarithm in defining entropies;
translation to the conventions of information theory and
thermodynamics involve trivial unit conversions via multi-
plication by ln2 and Boltzmann’s constant, respectively.
The entropy can be defined as the logarithm of the number

of effective or likely states (which is equal to the total number
of states if all accessible states have equal probability, such as in
the microcanonical ensemble). Let Ω(X) and Ω(X|Y) represent
the number of effective states of X and the number of states of
X given that Y is known, respectively. The mutual information
can be expressed as ln[Ω(X)] − ln[Ω(X|Y)], which can be
rewritten as a logarithm of the ratio between the conditional
and unconditional state space sizes:
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The mutual information is a thermodynamic function and, for
an ergodic system, can be obtained by averaging over an
ensemble of independent instances of the system rather than
averaging a single system over time. Below, I introduce the
conditional activity function to measure correlations in timing,
and for which time-averaging is not equivalent to ensemble-
averaging.
The conditional activity function, formulated here, is well-

defined for systems in which the degrees of freedom can be
characterized (or well-approximated) as residing in one of a
finite set of discrete states. If this is the case, the conditional
activity function between any pair of degrees of freedom is
directly calculated from the time series of the degrees of
freedom as follows. Let X and Y denote two degrees of freedom
that can transition between distinct states over time. Define the
transition time function, T(X, i), to be the time of the ith
transition of X. Define the waiting time function, W(X, t), to be
the time interval, starting at time t, until the next transition of
X. These two functions do not require the status of each degree
of freedom at each time point; they simply require a list of
times at which each degree of freedom makes a transition. Let
the number of total transitions of X be N(X) ≫ 1 during the

observation time τ ≡ T(X, N(X)). Then the mean persistence
time of X is
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which is proportional to the mean-squared waiting times
between transitions in the time series of X. The squared waiting
times are the product of each waiting time multiplied by the
probability of selecting that waiting time, which is itself
proportional to that waiting time; intuitively, the mean
persistence time is the expected waiting time, starting from a
random time point, until the next transition of X.
The exchange time of X following the (i + 1)th transition in

Y is W(X, T(Y, i + 1)). The probability that, starting from a
randomly chosen initial observation time, the (i + 1)th

transition of Y is first observed is given by τ
W Y T Y i( , ( , ))1 ,

which is simply the time interval from the ith to the (i + 1)th
transition of Y, divided by the total trajectory time. Therefore,
the mean exchange time of X following a transition in Y is
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= +
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Intuitively, this corresponds to observing the process starting at
a random time point, waiting for the first instance of a
transition in Y, measuring the subsequent time it takes for a
transition to occur in X, and averaging this measured time over
many repeats of this process.
Each term in the summations of eqs 2−3 is a waiting time of

X multiplied by the (un-normalized) probability of encounter-
ing that waiting time following either a previous transition of X
(eq 2) or a transition in Y (eq 3); the reciprocal of the
observation time in front of the summation normalizes the
waiting time probability. For X = Y, these relations correspond
to the mean of the persistence and exchange time functions
encountered in the theory of glasses.11,15 These are both
measures of the waiting time until the next event, and differ in
their definition of starting times: the persistence time uses a
random time-point whereas the exchange time uses a time-
point at which a previous event occurred. Moreover, previous
work13 on protein side chain dynamics has shown that these
time scales can differ dramatically, demonstrating intermittency
and correlation of protein side-chain displacement. The
exchange time is generalized in this work to include the
waiting time of one degree of freedom conditional on (i.e.,
after) the change in a different degree of freedom. The
conditional activity of X on Y is defined to be

τ
τ

≡ −
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which is analogous to the expression for mutual information
(eq 1), except that the conditioned and unconditioned number
of states in eq 1 are replaced by the exchange and persistence
times, respectively, in eq 4. If X and Y are independent
processes, then A[X][Y] = 0. For the special case of X = Y,
τx[X][X] is the (normalized) mean product of adjacent waiting
times in the time series of X. The diagonal elements A[X][X]
represent the dynamical memory of X; if the waiting time until
the next transition of X is independent of the previous history
of X, A[X][X] = 0, meaning that the transition statistics of X are
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Poissonian (i.e., “memoryless”). Note that, unlike the mutual
information, the conditional activity matrix is generally not
symmetric: A[X][Y] is in general not equal to A[Y][X]. This is
because, unlike the “and” operator used to construct the mutual
information, the “after” operator used to construct the
conditional activity is not commutative: time is directional.

■ RESULTS
The degrees of freedom studied here are side-chain dihedral
angles. Side-chain fluctuations have been shown to play a
critical role in protein function,16 and recent experimental17,18

and computational19,20 work demonstrated that such fluctua-
tions occur throughout the protein structure, even in the
densely packed protein core. Such interconversions can be
correlated between different regions of proteins despite
minimal backbone mobility.21,22 Furthermore, side-chain
dynamical statistics can provide a natural reporter for the
parts of the protein that are jammed, even if the underlying
mechanism involves subtle backbone conformational changes.
Figure 1 shows the conformational statistics of a few

representative side-chain dihedral angles in a typical globular
protein, showing that the dihedral angle distribution is well-
represented by a set of distinct basins. Despite similar
(thermodynamic) occupancies showing typically three or two
minimal-energy dihedral angle basins (Figure 1b), the
(dynamical) waiting time distribution can vary over many
orders of magnitude for a given dihedral angle, as well as among
different dihedrals (Figure 1c).
I calculated the conditional activity of the side-chain

dynamics of catabolite activator protein, which is a homodi-
meric protein complex. Catabolite activator protein binds to the
small signaling molecule cAMP, which is produced in response
to low glucose levels; upon binding cAMP, catabolite activator

protein binds to DNA and recruits RNA polymerase to
transcribe genes for metabolism of energy sources other than
glucose. There is dynamical allostery between two cAMP-
binding pockets and the DNA-binding sites of the protein
complex.4

Time-series of side-chain dihedral angle transitions were
obtained from all-atom molecular dynamics simulations of
catabolite activator protein starting from the X-ray crystallo-
graphic structure.23 Crucially, DNA and cAMP were absent
from the simulations in order to calculate the conformational
dynamics and network behavior intrinsic to the protein
complex. The protein complex was equilibrated by coupling
to a 28 °C temperature and 1 atm pressure bath, in a single
simulation trajectory lasting three microseconds. In addition to
side-chain dihedral angles, the backbone conformation was also
monitored for structural signatures such as root-mean-square-
deviation (RMSD) analysis, both on a per-residue level, as well
as for the protein complex as a whole to monitor convergence
(Figure S1). Normal modes of the complex were also calculated
(Movies S1−S4). These analyses showed that the loop region
of the complex near the active sight is highly flexible and
elucidated large-scale conformational movements, but did not
reveal the residue-specific correlations obtained from analyzing
side-chain dihedral statistics.
From the simulation trajectory, the conditional activity was

calculated according to eq 4. For all side-chains studied, the
dihedral angles fall into one, two or three distinct rotameric
basins, each centered at a peak in the dihedral population
distribution (see Figure 1). For each of the 850 distinct side-
chain dihedral angles, the list of times when the dihedral
transitioned between basins was calculated using the simulation
trajectory. Then, the persistence and exchange times were
calculated as in eqs 2−3, by applying the transition time and
waiting time functions on the list of times. The mutual
information between all dihedral angles was also calculated in
order to compare and contrast with the conditional activity
function.
The diagonal elements of the mutual information matrix are

the conformational entropies of each side chain dihedral angle;
the exponential of the entropy corresponds to the effective
number of rotameric states available to the dihedral angle. The
side-chain conformational entropy is uniform over the surface
of the protein, and suppressed in the protein interior due to the
predominance of residues occupying a single dihedral basin in
the tightly packed interior (see Figure 2a).
In an analogous fashion, the diagonal elements of the

conditional activity matrix measure the dynamical memory (i.e.,
the extent of non-Poissonian dynamics) of each side chain
dihedral angle; if the dynamics can be well-characterized by a
fast rate in an activated state and a slow rate of activation
(unjamming), the exponential of the dynamical memory
corresponds to the ratio of these two rates. Figure 2b shows
the dihedral angles as spheres whose volumes are proportional
to the dynamical memory. Whereas some degrees of freedom
have Poissonian waiting-time statistics (negligible dynamical
memory), for others the expected waiting time until the next
transition is reduced by more than 2 orders of magnitude
following a previous transition; in the latter case, the dynamical
transitions are bunched into short periods of high activity
followed by relatively long quiescent time periods. This
heterogeneous spatial distribution of dynamical memory is in
contrast to the homogeneous entropy distribution (Figure 2a).
It is important to note that the dynamical memory of dihedrals

Figure 1. Protein side-chain dynamics. The degrees of freedom
correspond to rotations of residue dihedral angles denoted by χ (a).
Despite having similar probability distributions (b), degrees of
freedom may undergo very different temporal dynamics (c).
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is due to the collective interactions with the other degrees of
freedom in the protein; however, the dynamics of the protein in
the full (high-dimensional) microstate space is always memory-
less; the memory effect arises from projecting this full space
onto a lower-dimensional space such as that of an individual
dihedral.
The dynamical memory is clustered into three separate

modules corresponding to the top (DNA binding), middle
(allosteric binding), and bottom (RNA polymerase binding)
parts of the protein.24 This contrasts with the uniform
distribution of conformational entropy. These contiguous
regions of high dynamical memory correspond to the
experimentally determined functional modules, yet possess no
structural signatures to differentiate them from the nonfunc-
tional regions of the protein. The dihedrals with high levels of
dynamical memory are clustered together in functional modules
because those are the regions of the protein whose side-chain

fluctuations are synchronous with that of their neighbors in the
module. However, different subsets of the module may be
dynamically correlated at any one time: the dynamical memory
is not interaction-specific. In contrast, specific correlations
among the dihedrals, which may correspond to robust pathways
of intraprotein communication, are contained in the off-
diagonal elements of the conditional activity matrix (see
below).
Dynamical correlations between different degrees of freedom

are encoded by the off-diagonal elements of the conditional
activity matrix. Shown in Figure 3a is a comparison of how the
interdihedral mutual information and conditional activity decay
as a function of interdihedral distance r. Given a correlation
function, f(r), the fraction of correlated dihedral pairs is the
fraction of dihedral pairs separated by r for which f(r)/f(0) > 1/
e ≈ 0.368 (e-fold decay). The correlation functions of interest
are the conditional activity and mutual information for any pair

Figure 2. Conformational entropy versus dynamical memory in
catabolite activator protein. The diagonal of the mutual information
matrix I(X;X) is the conformational entropy of dihedral angle X (blue;
a). The diagonal of the conditional activity matrix A[X][X] is the
dynamical memory of dihedral angle X (red, b). Each degree of
freedom is drawn as a sphere with the sphere volume proportional to
the correlation function. The entropy is homogeneous in both
magnitude and spatial distribution (a), whereas the dynamical memory
is heterogeneous in both aspects. Three distinct regions with high
dynamical memory correspond to the three functional modules: DNA-
binding module, allosteric cAMP binding module, and RNA
polymerase binding module (b). The dihedral angles with the most
dynamical memory undergo dynamics in bursts, with intraburst
waiting times hundreds of times shorter than interburst waiting times.

Figure 3. Interdihedral mutual information vs conditional activity.
Fraction of correlated dihedral pairs as a function of distance
separation in catabolite activator protein (a). The mutual information
(thermodynamic correlations; blue) between dihedral angles is
negligible beyond 0.75 nm. In contrast, at least 1% of pairwise
conditional activities (dynamic correlations; red) persist, irrespective
of separation distance. The error bars were obtained as described in
the text. Eigenvalue spectrum of pairwise dihedral correlations in
catabolite activator protein (b). The entropy is evenly spread among
the eigenvalues of the mutual information (blue), with no eigenvalue
accounting for more than 1% of the total dihedral entropy. In contrast,
the principal eigenvalue of the conditional activity accounts for 10% of
all dynamical memory in the protein complex, and is well separated
from the other eigenvalues. The eigenvectors corresponding to the top
two eigenvalues of the mutual information, as well as the principal
eigenvalue of the conditional activity, are shown in Figures S2 and 4c,
respectively.
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of degrees of freedom separated by distance r: f(r)∈{A[X][Y]r,
I(X;Y)r}. The error bars are set by the number of sampling
events in the simulation time window (see Methods section).
For most pairs of correlated dihedrals, the correlation signal is
one to two orders of magnitude larger than the expected noise.
The mutual information decays on the length scale of 0.5 nm
and no pair of dihedrals separated by more than a nanometer
share any measurable mutual entropy. In contrast, for all
interdihedral distances greater than 0.4 nm, 3011 dihedral pairs
are dynamically correlated, corresponding to about 1% of all
dihedral pairs. Remarkably, over up to 6.5 nm, there is no
discernible dampening of fraction of dihedral pairs that are
dynamically correlated; at physiological levels of thermal noise,
dynamical correlations seem to be capable of being transmitted
over much longer distances than thermodynamic correlations.
This finding is consistent with the picture that a subset of
backbone conformational modes, which can include long-
ranged collective motion, control the dynamical activity of
multiple dihedral motions, leading to correlated periods of
dynamical motion even though the motions themselves are not
structurally correlated (i.e., coherent).
The interdihedral timing correlations are not only longer-

ranged, but also can be concentrated into strongly correlated
modes. The mutual information matrix and symmetrized
conditional activity matrix (mean of the matrix with its
transpose) were diagonalized, as done in earlier studies,21,25

to elucidate to what extent the correlations are concentrated in
a few principal communities of dihedrals and the spatial extent
of such communities. Figure 3b shows the eigenvalue spectra of
the mutual information and conditional activity matrices. The
principal eigenvalue comprises 10% of all positive timing
correlations in the protein complex despite being one of 850
total modes, and is qualitatively separated from the rest of the
eigenvalues by a gap in the eigenvalue spectrum. In constrast,
there are two principal eigenvalues of the mutual information
matrix, neither of which is significantly separated from the rest
of the spectrum, and no mode accounts for more than 1% of
the total mutual information.
Figures 2 and 3 highlight two features of timing correlations

that are not captured by structural correlations. First, from
Figure 2, comparing the diagonal of the conditional activity
matrix with that of the mutual information, we observe that
there can be spatial heterogeneity of the former (non-
Poissonian behavior) despite a homogeneous distribution of
the latter (entropy); a consequence of this feature is that this
heterogeneity can be used to locate regions of the protein
whose dihedrals are highly sensitive to their environment and
are thus good candidates for being functional modules, as is the
case for catabolite activator protein. Second, the off-diagonal
(interdihedral) elements of the conditional activity are
correlated over much larger distances than the mutual
information (Figure 3a). In addition, certain communities of
dihedrals have a disproportionate share of the dynamical
correlation (Figure 3b). A consequence of these features is the
possibility to encode dynamical allostery, as demonstrated
below.
Figure 4c shows the principal eigenvector of the symmetrized

conditional activity matrix, whose eigenvalue is well separated
from all others as shown in Figure 3b, mapped onto the
structure of catabolite activator protein. The principal
eigenvector of the conditional activity identifies the set of
dihedrals that are maximally intercorrelated in terms of being
active versus inactive. The sphere size of each dihedral angle is

proportional to the contribution of the dihedral to the principal
eigenvector. The previously known (experimentally deter-
mined) active and allosteric sites are shaded in magenta and
cyan, respectively. The simulations started from the X-ray
structure reveal that dynamical correlations are encoded
between the cAMP binding site of one monomer of the
homodimer complex and the active site of the other protein
monomer. Because the two monomers are identical, on time
scales longer than the three-microsecond simulation window,
the protein dimer is expected to interconvert to an alternate
conformational basin in which the other allosteric-active site
pair becomes correlated. This structure−function relationship is
not revealed in the two principal eigenvectors of the mutual
information, which are localized and do not overlap with
dihedrals in the active site (Figure S2). Their corresponding
eigenvalues are not well separated from the rest of the spectrum
(Figure 3b) and so the communities of dihedrals they represent
are not significantly more thermodynamically coupled than
other modes of the mutual information matrix.
To further validate the ability of the conditional activity to

identify selective coupling interactions and the correspondence
to dynamical allostery, two other proteins were also simulated
in the same manner for two microseconds each: PDZ326 and
human lysozyme, with 228 and 246 side chain dihedral angles,
respectively.27 PDZ3 (PSD-95/SAP90) is a binding domain
that, unlike other PDZ domains, possesses an additional tail
helix; there is dynamical allostery between the tail helix and the
binding groove;28 these regions are correctly captured by the

Figure 4. Dynamically correlated subnetworks. In the allosteric
proteins (a and c), the principal eigenvector of the (symmetrized)
conditional activity matrix predicts a sparse subset of degrees of
freedom that are dynamically connected (sphere size proportional to
degree of representation in the principal eigenvector); this subset
pinpoints the experimentally determined allosteric site (cyan high-
light) and includes the active site (magenta highlight). In contrast, for
the nonallosteric lysozyme (b), the principal eigenvector is spread over
the entire protein.
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principal eigenvector of the conditional activity matrix (Figure
4a). Lysozyme, which served as a control, does not possess
long-range allostery; in correspondence, the principal eigen-
vector is evenly distributed throughout the protein (Figure 4b).
For all three proteins studied, the principal eigenvalue contains
between 10 and 30% of the total dynamical memory. This
indicates that the existence and long-range correlations of
waiting times between side chain fluctuations is intrinsic to
proteins. However, only the two dynamically allosteric proteins
(catabolite activator protein and PDZ3) are folded in such a
way as to concentrate these correlations into sparse regions that
correspond to regions of allosteric control.

■ DISCUSSION
It has long been understood that allostery can occur without
changing protein conformation.7,9 Whereas attention has up to
now focused on explaining allostery using equilibrium
thermodynamic quantities such as enthalpy and entropy
(including mutual entropy), these results show that non-
equilibrium information (namely, correlations between side-
chain dihedral rotation waiting times) is quantified by a new
measure: the conditional activity. The conditional activity can
reveal the distinct functional modules within proteins as well as
the sparse networks of correlated dynamics that can enable
allostery without conformational change. Like any other
correlation function, the conditional activity does not establish
causality. However, it shows that long-distance timing
correlations can exist even when enthalpic and entropic
interactions are short-ranged.
As shown by Figure 3a, the inter-residue mutual information

attenuates within one nanometer, indicating that structural
correlations do not extend beyond nearest neighbor. From the
connectivity analysis29,30 of the mutual information network,
most dihedrals that share mutual information do so with more
than one neighbor. Thus, the mutual information is short-
ranged not because the nearest-neighbor structural correlations
are too sparse to form pathways. Rather, it is because the
structural correlations lose coherence beyond nearest-neighbor
due to thermal noise: direct structural correlations between
side-chains are not transitive. However, it is important to note
that long-range side-chain structural correlations can be
mediated by backbone conformational changes, for example
in nondynamical allostery. Therefore, the timing-based
approach of the conditional activity complements, rather than
replaces, the existing structure-based methods.
The possibility remains that the backbone is involved in

transmitting the dynamical correlations; if so, such rearrange-
ments are of the same small magnitude as other backbone
fluctuations that do not give rise to enhanced/suppressed side-
chain activity, and are therefore not detectable by directly
monitoring backbone motions. For example, neither the
backbone RMSD fluctuations (Figure S1), nor elastic network
analysis of the protein complex (Movies S1−S4) reveal either
the three-module functional compartmentalization or the
allosteric connection between the active site and ligand-binding
pocket.
These findings complement the large body of experimental

work on allostery without backbone conformational change.
For catabolite activator protein, entropic effects were found to
govern cooperative binding between the first and second cAMP
ligands, with amide exchange rates showing that the second
ligand binding event significantly increased the rigidity of the
central helix.4 In terms of the allostery between cAMP and

DNA binding, mutating various key residues in catabolite
activator protein, for example at residues 136 and 138, has been
experimentally implicated in modulating the allosteric effect of
cyclic AMP on DNA binding.31 These residues are at or near
the hinge connecting the central helices to the DNA binding
module; as such, mutating them could have important
consequences for the rigidity of the hinge and therefore the
dynamical coupling between the allosteric region and the DNA
binding region, consistent with the results shown here. An
important future step is to calculate the conditional activity of
these mutated forms to see whether the dynamical correlations
are also disrupted. For the catabolite activator protein
homodimer, the conditional activity analysis indicates that the
coupling exists between the cAMP-binding pocket of one
monomer subunit and the DNA-binding domain of the other
monomer. Coupling is absent between the other cAMP- and
DNA-binding sites because the crystal structure is one of two
degenerate structures in which the monomer conformations are
not identical. The simulations thus sampled one of two equally
stable conformational basins. It would be of interest to further
investigate, via more comprehensive simulations, the inter-
conversion between these two basins as well as the existence of
other metastable basins in which both or neither of the
couplings are activated.
The picture of local fluctuations at the allosteric site affecting

fluctuations at the active site is also supported by acid unfolding
and proton binding data on SNase showing that local
fluctuations modulate ligand-binding affinities.6 In fact, such
fluctuation data can be used instead of molecular dynamics data
to build conditional activity maps using experimental data.
Finally, the role of rare yet long-lived conformational states in
providing the disproportionate fraction of protein functionality
has recently been experimentally demonstrated for a population
of identical proteins,32 in support of the finding that proteins
can be in states of long as well as short waiting times between
dynamical events, and that the different states can exhibit
different functions.
The conditional activity is a general tool for probing

dynamical correlations and can be used in future to predict
functional modules and to find the dynamical connections,
including those responsible for allostery, of a wide range of
proteins for which such information is not readily obtained
experimentally. For example, intrinsic collective dynamics is
intimately linked to the catalytic function of proteins, even in
the absence of the catalytic substrate. Such dynamics can
encompass a subnetwork of dynamical fluctuations that is not
limited to the catalytic site33 and may be captured using the
conditional activity. More broadly, in the case of signaling
proteins with multiple binding partners, do different binding
permutations lead to unique dynamical correlations that
indicate the (in)activation of different downstream binding
partners? It would also be illustrative to compare the
dynamically-identified memory modules with the structurally
identified autonomously folded fragments,34 as well as the
coevolutionarily identified protein sectors.35

Taken together, these results demonstrate that the dynamical
heterogeneity within proteins gives rise to correlations in
timing that can span many nanometers even if structural
correlations are short-range; this is because structural side-chain
correlations, unlike timing correlations, are not transitive in a
noisy environment. This means that dynamical correlations
may be necessary for allosteric interactions between distant
side-chains in the absence of overt backbone conformational
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change. The conditional activity reveals regions of highly non-
Poissonian dynamics coalescing into functionally relevant
modules as well as allosteric connections.
Outside of its application to protein dynamics, the

conditional activity approach quantifies a new conceptual
framework for capturing cooperativity in the time domain, and
is suited to finding collective relationships in any type of
collective system whose members undergo history-dependent
discrete dynamics. As such, it could find wide application in the
study of complex biological networks.

■ METHODS
Simulation and Analysis Details. The simulations were

performed using the parallelized GROMACS 4.536,37 package using
the AMBER03 force field.38 V-sites39 were used to coarse-grain
hydrogen vibrations, and a simulation time step of 5 fs was used.
Structures were saved every 200 fs. All equilibrated simulations were
performed at 298.5 K and 1 atm pressure, with constant temperature
and pressure maintained using the Nose−́Hoover40,41 thermostat and
Parrinello−Raman42 barostat. Explicit water molecules were simulated
using the TIP3P43 water model.
PDZ3. Structure is taken from the pdb file 1BFE.26 5488 TIP3P

water molecules and 4 sodium ions solvated the protein in a charge-
neutral cubic box with periodic boundary conditions. Two micro-
seconds of NPT simulations were obtained in a single run.
Lysozyme. Structure was taken from the pdb file 1AKI.27 12 359

TIP3P water molecules and 8 chlorine ions solvated the protein in a
charge-neutral cubic box with periodic boundary conditions. Two
microseconds of NPT simulations were obtained in a single run.
Catabolite Activator Protein. Structure was taken from the pdb

file 1G6N,23 and cAMP ligands were removed from the pdb file prior
to simulation. 16 179 TIP3P water molecules solvated a rhombic
dodecahedron box with periodic boundary conditions. Three micro-
seconds of NPT simulations were obtained in a single run.
Visual analysis and illustrations were performed using VMD44 and

PyMOL,45 respectively. A side-chain dihedral transition is deemed to
have occurred at time t if the peak closest to the dihedral at time t + δt
is different from that at time t; the dihedral hopped from one basin to
another at time t. As long as δt < 20 ps, the results are not sensitive to
the choice of δt, which was chosen to be 5 ps. The statistical errors
arise from the finite number of distinct transitions that occur in the
simulation window, and are larger for degrees of freedom that undergo
rare fluctuations. Possible error arises from the probability that a finite
sampling of two independent degrees of freedom will seem to yield
correlations due to random chance. For both the mutual information
and the conditional activity, the error bars are found by calculating the
correlation functions on same-size data sets for which the degrees of
freedom are temporally decoupled from each other; the decoupling
was performed by shifting the time coordinates of each transition of a
dihedral angle by a random time interval chosen with uniform
probability from the range [−200 ns, 200 ns]. By averaging the value
of the correlation function over 100 repeats of this randomization
procedure for all degrees of freedom, the expected spurious correlation
due to finite sampling size were calculated and used as the error bars of
the inter-residue correlation functions in Figure 3.
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Backbone RMSD, both in aggregate and as a function of
location in catabolite activator protein, are shown in the
Figure S1. The top two principal eigenvectors, projected
onto the protein structure, are shown in Figure S2. The
four lowest frequency (nonrotational/translational)
normal modes of the protein are visualized in the
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